Co-clustering numerical data under user-defined constraints
نویسندگان
چکیده
In the generic setting of objects × attributes matrix data analysis, co-clustering appears as an interesting unsupervised data mining method. A co-clustering task provides a bi-partition made of co-clusters: each co-cluster is a group of objects associated to a group of attributes and these associations can support expert interpretations. Many constrained clustering algorithms have been proposed to exploit the domain knowledge and to improve partition relevancy in the mono-dimensional clustering case (e.g. using the must-link and cannot-link constraints on one of the two dimensions). Here, we consider constrained co-clustering not only for extended must-link and cannot-link constraints (i.e. both objects and attributes can be involved), but also for interval constraints that enforce properties of co-clusters when considering ordered domains. We describe an iterative co-clustering algorithm which exploits user-defined constraints while minimizing a given objective function. Thanks to a generic setting, we emphasize that different objective functions can be used. The added value of our approach is demonstrated on both synthetic and real data. Among others, several experiments illustrate the practical impact of this original co-clustering setting in the context of gene expression data analysis, and in an original application to a protein motif discovery problem. 2009 Wiley Periodicals, Inc. Statistical Analysis and Data Mining 2: 000–000, 2009
منابع مشابه
Numerical Data Co-clustering via Sum-Squared Residue Minimization and User-defined Constraint Satisfaction
Co-clustering aims at computing a bi-partition that is a collection of co-clusters: each co-cluster is a group of objects associated to a group of attributes and these associations can support interpretations. We consider constrained co-clustering not only for extended must-link and cannot-link constraints (i.e., both objects and attributes can be involved), but also for interval constraints th...
متن کاملTowards Constrained Co-clustering in Ordered 0/1 Data Sets
Within 0/1 data, co-clustering provides a collection of biclusters, i.e., linked clusters for both objects and Boolean properties. Beside the classical need for grouping quality optimization, one can also use user-defined constraints to capture subjective interestingness aspects and thus to improve bi-cluster relevancy. We consider the case of 0/1 data where at least one dimension is ordered, e...
متن کاملConstrained Co-clustering of Gene Expression Data
In many applications, the expert interpretation of coclustering is easier than for mono-dimensional clustering. Co-clustering aims at computing a bi-partition that is a collection of co-clusters: each co-cluster is a group of objects associated to a group of attributes and these associations can support interpretations. Many constrained clustering algorithms have been proposed to exploit the do...
متن کاملRepeated Record Ordering for Constrained Size Clustering
One of the main techniques used in data mining is data clustering, which has many applications in computer science, biology, and social sciences. Constrained clustering is a type of clustering in which side information provided by the user is incorporated into current clustering algorithms. One of the well researched constrained clustering algorithms is called microaggregation. In a microaggreg...
متن کاملAnalyzing and Optimizing Ant-clustering Algorithm by Using Numerical Methods for Efficient Data Mining
Clustering analysis is an important function of data mining. There are various clustering methods in Data Mining. Based on these methods various clustering algorithms are developed. Ant-clustering algorithm is one of such approaches that perform cluster analysis based on “Swarm Intelligence’. Existing antclustering algorithm uses two user defined parameters to calculate the picking-up probabili...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Statistical Analysis and Data Mining
دوره 3 شماره
صفحات -
تاریخ انتشار 2010